High magnesium prevents matrix vesicle-mediated mineralization in human bone marrow-derived mesenchymal stem cells via mitochondrial pathway and autophagy.

Authors : Li Y,  Wang J ,  Yue J , Wang Y, Yang C, Cui Q

Cell Biology International : 2018 February

Abstract

Magnesium, as a physiological calcium antagonist, plays a vital role in the bone metabolism and the balance between magnesium and calcium is crucial in bone physiology. We recently demonstrated that matrix mineralization in human bone marrow-derived mesenchymal stem cells (hBMSCs) can be suppressed by high Mg2+ .

However, a complete understanding of the mechanisms involved still remains to be elucidated. As mitochondrial calcium phosphate granules depletion manifests concurrently with the appearance of matrix vesicles (MVs) and autophagy are associated with matrix mineralization, we studied the effect of high extracellular Mg2+ on these pathways.

Our results first demonstrated that high Mg2+ has a significant inhibitory effect on the generalization of extracellular mineral aggregates and the expression of collagen 1 along which the mineral crystals grow. Transmission electron microscope results showed that less amount of MVs were observed inside hBMSCs treated with high Mg2+ and high Mg2+ inhibited the release of MVs.

In addition, high Mg2+ significantly suppressed mitochondrial Ca2+ accumulation. Autophagy is promoted as a response to osteogenesis of hBMSCs. High Mg2+ inhibited the level of autophagy upon osteogenesis and autophagy inhibitor 3-MA significantly suppressed mineralization. Exogenous ATP can reverse the inhibitory effect of high Mg2+ by increasing the level of autophagy.

Taken together, our results indicate that high Mg2+ may modulate MVs-mediated mineralization via suppressing mitochondrial Ca2+ intensity and regulates autophagy of hBMSCs upon osteogenesis, resulting in decreased extracellular mineralized matrix deposition. Our results contribute to the understanding of the role of magnesium homeostasis in osteoporosis and the design of magnesium alloys.

Source : https://www.ncbi.nlm.nih.gov/pubmed/29024399

Autophagy: A lysosomal degradation pathway with a central role in health and disease

Author : Eeva-LiisaEskelinen PaulSaftig

Abstract

Autophagy delivers cytoplasmic material and organelles to lysosomes for degradation. The formation of autophagosomes is controlled by a specific set of autophagy genes called atg genes. The magnitude of autophagosome formation is tightly regulated by intracellular and extracellular amino acid concentrations and ATP levels via signaling pathways that include the nutrient sensing kinase TOR. Autophagy functions as a stress response that is upregulated by starvation, oxidative stress, or other harmful conditions. Remarkably, autophagy has been shown to possess important housekeeping and quality control functions that contribute to health and longevity. Autophagy plays a role in innate and adaptive immunity, programmed cell death, as well as prevention of cancer, neurodegeneration and aging. In addition, impaired autophagic degradation contributes to the pathogenesis of several human diseases including lysosomal storage disorders and muscle diseases.

Fig. 1. Schematic presentation of autophagosome formation and maturation by fusion with endosomes and lysosomes. The arrowhead on the left illustrates the induction signal that initiates the process.

5. Physiological functions of autophagy

5.1. Stress response and housekeeping function

The role of autophagy as a survival mechanism during short-term amino acid starvation is well documented. Macroautophagy is induced by starvation of serum and amino acids; autophagosomes can be detected already after 15–30 min of starvation [55]. During long-term starvation, chaperone-mediated autophagy increases and macroautophagy decreases [80][81]. Yeast strains defective in autophagy do not survive nitrogen starvation [38]. Knockout mice deficient in one of the central autophagy proteins, Atg5, show that autophagy is indispensable for the energy metabolism immediately after birth [82]. Atg5 knockout mice die of starvation one day after birth.

In muscle and heart cells, autophagy seems to have a special housekeeping role in the turnover of cytoplasmic constituents including mitochondria. This is revealed by myopathy and cardiomyopathy in patients and mice possessing a defective autophagic degradation due to deficiency of the lysosomal membrane protein LAMP-2 [83][84][85]. LAMP-2 deficiency is described in detail later in this review. The importance of autophagy for the heart muscle is supported by a study showing that heart-specific loss of the autophagy protein Atg5 causes cardiomyopathy in mice [86]. Evidence has been published suggesting that damaged mitochondria might be autophagocytosed selectively in a process termed mitophagy [87]. Mitochondria are the major source of reactive oxygen species in cells. Interestingly, reactive oxygen species are necessary for the signal transduction pathway initiating starvation-induced autophagy [88].

It was proposed long ago that autophagy has a role in growth regulation, as suggested by decreased autophagy during growth of the kidney after unilateral nephrectomy [89]. Inducible knockdown of the autophagy protein Atg5 in cell culture shows that autophagy negatively controls cell size [90]. Similar result was observed in Drosophila fat body over-expressing the autophagy protein Atg1 [91].

Autophagy contributes to intracellular quality control and housekeeping, especially in turnover of aggregate-prone proteins. Prevention of autophagy by conditional knockout of atg7 leads to accumulation of ubiquitinated protein aggregates in mouse tissues [92]. Tissue-specific knockout of autophagy proteins in the central nervous system causes accumulation of ubiquitin-positive protein aggregates and neurodegeneration in mice [93][94]. Further, enhanced autophagy reduces the toxicity of the Huntingtin protein aggregates that accumulate in Huntington disease [95]. Autophagy may prevent aggregate formation by degrading the proteins as monomers, oligomers, or after aggregate formation [96]. It is not clear at present whether aggregated proteins are segregated preferentially, or whether they are removed via unspecific autophagic uptake of cytoplasm. Two proteins have been proposed to function during the uptake of protein aggregates: Alfy and p62 [97][98]. p62 binds to both ubiquitin-conjugated aggregate-prone proteins and the autophagosome protein LC3 [99], which suggests that it could selectively recruit autophagy machinery to the aggregates and enhance their autophagic clearance.

In addition to removal of cytoplasmic aggregate-prone proteins, autophagy also contributes to the quality control in the ER. Unfolded protein response induces autophagy, and this induction is beneficial for cell survival [100][101][102].

Autophagic degradation is also needed for early embryonic development. A recent study shows that autophagy-defective mouse eggs fertilized with autophagy-defective sperm, failed to develop beyond the four and eight cell stages [103]. The authors suggest that autophagy may be needed in the preimplantation embryos for protein recycling, production of amino acids for protein synthesis or substrates for energy production, or for removal of obsolete maternal factors.

5.2. Innate and adaptive immunity

Autophagy contributes to both innate and adaptive immunity [104][105]. In some cases autophagy can protect cells against intracellular pathogens. Induction of autophagy during Herpes simplex virus infection, and localization of viral particles inside autophagic vacuoles, were proposed to indicate that autophagy acts as a host-defense mechanism in infected cells [59]. The Herpes virus virulence protein, ICP34.5, inhibits autophagy, suggesting that the virus has developed a way to prevent the autophagic defense of the host cell. Autophagy may also help cells to defend against intracellular bacteria [106]. Sequestration of intracellular Group A Streptococci in autophagosome-like structures protects cells against the bacteria [107]Mycobacterium tuberculosis is normally able to survive inside macrophages by preventing the fusion of phagosomes with lysosomes. Surprisingly, induction of autophagy bypasses the maturation defect, leading to phagolysosome formation and bacterial killing [108].

Macroautophagy also contributes to antigen presentation. Major histocompatibility complex (MHC) class II molecules present products of lysosomal proteolysis to CD4(+) T cells. Extracellular antigen uptake is considered to be the main source of MHC class II ligands. However, it was demonstrated that in MHC class II-positive cells, including dendritic cells, B cells, and epithelial cells, autophagosomes continuously fuse with multivesicular MHC class II-loading compartments [109]. This pathway is of functional relevance, because targeting of the influenza matrix protein 1 to autophagosomes enhances its MHC class II presentation to CD4(+) T cells. Thus it seems that macroautophagy efficiently delivers cytosolic proteins for MHC class II presentation and can improve helper T cell stimulation.

5.3. Cell death

Autophagy also seems to have roles in programmed cell death [110][111]. Type II programmed cell death, or autophagic cell death, was originally described in mammary carcinoma cells [112][113]. Autophagy proteins were shown to be necessary for cell death under certain conditions, such as in apoptosis-defective cells [114][115][116]. In this scenario autophagy is needed for the execution of cell death. Under other conditions, such as nutrient starvation, autophagy protects cells against apoptosis by providing nutrients [117][118][119]. The regulation of apoptosis and autophagy are linked via the antiapoptotic protein Bcl-2. Bcl-2 inhibits Beclin 1-dependent autophagy by binding to Beclin 1 and preventing its association with Vps34 [52]. This anti-autophagy function of Bcl-2 was proposed to help maintain autophagy at levels that are compatible with cell survival, rather than cell death.

Lipids may also regulate autophagy and its outcome to the host cell. Ceramide and sphingosine 1-phosphate, a metabolite of ceramide, both induce autophagy in mammalian cells [120]. The outcome on cell survival is however different: ceramide promotes cell death, while sphingosine 1-phosphate increases cell survival. Ceramide is part of the signaling cascade initiated by chemotherapy, while sphingosine 1-phosphate is part of the signaling cascade initiated by starvation. Beclin 1 level and the autophagy response are stronger during ceramide signaling [121].

Autophagy has functions in cell death during development [122]atg genes are necessary for the clearance of apoptotic cells during embryonic development in mice [123]. Autophagy contributes to dead-cell clearance during programmed cell death by maintaining cellular energy levels in the dying cells, thereby allowing the generation of cell surface and secreted signals that then promote engulfment of cell corpses by neighboring cells. Autophagy is also indispensable for the execution of certain types of cell death during development. The degradation of Drosophila salivary glands by type II programmed cell death depends on autophagy [73].

5.4. Aging and longevity

Finally, autophagy also contributes to longevity [124]. Reduced caloric intake increases longevity in several animal species. Increased autophagic turnover of cytoplasmic constituents including mitochondria was shown to contribute to the longer life in the dieting animals [125]. Further evidence that autophagy contributes to longevity come from Caenorhabditis elegans mutants possessing a defective insulin receptor (daf2 mutant), which live longer than control worms. The increased lifetime of these mutant worms depends on a functional autophagic pathway [126]. Moreover, knockdown of autophagy gene products including Atg7 and Atg12 were shown to shorten the lifespan of both wild type and daf2 mutant C. elegans [127]. Further, promoting basal levels of autophagy in the nervous system of adult Drosophila enhances longevity of the flies [128]. Together these studies give strong support for a role of autophagy in the prevention of aging.

Fig. 6 summarizes the physiological functions of autophagy described above.

Fig. 6. A summary of the functions of autophagy in health and disease.

6. Autophagy and disease

6.1. Cancer

Impaired autophagy contributes to cancer development [2][129][130]. Beclin 1 is monoallelically deleted in a large proportion of human breast and ovarian cancers. Over-expression of Beclin 1 in a breast cancer cell line increases autophagy and decreases the growth and tumorigenicity of these cells [131]. Mice with heterozygous deletion of Beclin 1 have less autophagy and more tumors than control mice [132][133]. Further, the other autophagy-promoting components of the Beclin 1/Vps34 complex, UVRAG and Ambra 1 (Fig. 4), are also tumor suppressors [48][49]. Moreover, knockout of Bif-1, also part of the Beclin 1 complex, significantly enhances the development of spontaneous tumors in mice [50]. On the other hand, binding of the proto-oncogenic proteins Bcl-2 or Bcl-XL to Beclin 1 inhibit autophagy [51][52]. In addition to the Beclin 1 complex, other tumor suppressors also enhance autophagy. PTEN is a phosphatase that decreases the concentration of class I PI3 kinase product and enhances autophagy [72]. PTEN is also a tumor suppressor [134]. Further, the activities of Ras and class I PI3-kinases inhibit autophagy and promote cell growth. Ras is mutated and class I PI3 kinases are upregulated in many cancers [135][136].

The results described above show that autophagy contributes to the prevention of tumorigenesis. Impaired autophagy can contribute to tumor formation via impaired regulation of cell growth, and/or via decreased cell death. In addition, it was shown that failure to sustain metabolism via autophagy results in increased DNA damage. This chromosomal instability increases tumor progression [137].

In advanced cancers, autophagy may have the opposite effect on the tumor development. Autophagy can benefit the progression of the tumor because it can provide nutrients during starvation [129][130][138]. In addition, autophagy was recently shown to improve the survival of p53-deficient cancer cells under starvation or hypoxic conditions [139]. These findings suggest that autophagy inhibition, rather than stimulation, might be beneficial in treatment of advanced cancer.

6.2. Neurodegeneration

Many age-related neurodegenerative diseases are characterized by the accumulation of ubiquitin-positive protein aggregates in affected brain regions. These misfolded, aberrant proteins can disrupt neuronal function and cause neurodegeneration. As described earlier, autophagy is necessary for the clearance of aggregate-prone proteins that are toxic especially for post-mitotic cells like neurons [130]. Tissue-specific knockout of the autophagy genes in neurons causes a massive accumulation of ubiquitin-positive protein aggregates and neurodegeneration in mice [93][94], indicating that autophagy is needed for the constitutive clearance of aggregate-prone proteins. Autophagy was recently shown to enhance the clearance of Huntingtin, mutant tau, synphilin 1 and α-synuclein, but not AIMP2 (p38) and mutant desmin [140]. This study indicates that autophagy is not able to degrade all protein aggregates. However, the role of autophagy has been demonstrated in Huntington’s disease, caused by mutations in Huntingtin, and familial Parkinson’s disease, caused by mutations in α-synuclein. Enhanced autophagy in animal models of these diseases improves clearance of the aggregated proteins and reduces the symptoms of neurodegeneration [95][141].

ESCRT complexes are necessary for the biogenesis of multivesicular endosomes. As described earlier, multivesicular endosomes are necessary for the maturation of autophagosomes into degradative autolysosomes. Mutations in ESCRT III subunits CHMP2B or mSnf7-2 are associated with two neurodegenerative diseases, frontotemporal dementia and amyotropic lateral sclerosis. Both diseases are characterized by abnormal ubiquitin-positive protein deposits in affected neurons. Cell lines and fruit flies depleted of CHMP2B or mSnf7-2 show decreased autophagic degradation, increased levels of ubiquitin-positive aggregates and increased neurodegeneration [27][29].

Alzheimer’s disease is characterized by the accumulation of extracellular amyloid plaques in the brain. These plaques consist of aggregated β-amyloid (Aβ) peptide. Autophagy was proposed to contribute to the production of Aβ. Autophagic compartments containing both amyloid precursor protein and Aβ accumulate in dystrophic neurons in Alzheimer brain [142][143]. Purified autophagic vacuoles contain all necessary constituents for Aβ production [142], and autophagic compartments were identified as a major reservoir of intracellular Aβ in the brain of Alzheimer patients and mouse models. The primary cause for the increased accumulation of autophagic compartments in Alzheimer’s disease was recently suggested to be their retarded maturation to autolysosomes [144].

A recent study, however, challenges the idea that autophagy contributes to the pathogenesis of Alzheimer’s disease. Beclin 1 was shown to be decreased in affected brain regions of patients with Alzheimer disease early in the disease process [145]. Heterozygous deletion of Beclin 1 in mice decreased neuronal autophagy and resulted in neurodegeneration. Transgenic mice expressing human amyloid precursor protein have been used as a mouse model for this disease. Genetic reduction of Beclin 1 expression increased intraneuronal Aβ accumulation, extracellular Aβ deposition, and neurodegeneration [145]. Increasing Beclin 1 levels by lentiviral expression reduced both intracellular and extracellular amyloid pathology in these transgenic mice. This study suggests that decreased, not increased, autophagy promotes Alzheimer’s disease progression. Further, enhancing autophagy by increasing Beclin 1 levels may have therapeutic potential in this disease.

6.3. Autophagy and lysosomal storage diseases

Niemann–Pick type C is a neurodegenerative lipid storage disorder characterized by a disruption of sphingolipid and cholesterol trafficking caused by mutations in either of two genes, npc1 and npc2. The disease produces cognitive impairment, ataxia and death, often in childhood. Cells deficient in npc genes show increased expression of Beclin 1 and LC3-II, the autophagosome-specific form of LC3, suggesting autophagy is induced [146]. Increased levels of LC3-II have also been observed in npc-deficient brain tissue [147]npc-Deficient cerebellar Purkinje neurons undergo a cell death that was proposed to depend on autophagy [148], suggesting increased autophagy may be harmful for neurons in NPC patients.

Most lysosomal storage diseases are caused by deficiencies of lysosomal hydrolases, leading to accumulation of undegraded substrate and other material in the lysosomal compartment. Lysosomal accumulation of substrates can also affect autophagosome–lysosome fusion. Autophagosomes accumulate in brain and isolated cell lines of mouse models of two lysosomal storage diseases associated with severe neurodegeneration, multiple sulfatase deficiency and mucopolysaccharidosis type IIIA [149]. Significantly reduced colocalization of the lysosomal membrane protein LAMP-1 with the autophagosome marker LC3 indicates that the fusion of lysosomal compartments with autophagosomes is impaired. In addition, cell lines isolated from these mice have decreased ability to degrade aggregate-prone proteins and show accumulation of polyubiquitinated proteins and non-functional mitochondria. Thus, neurodegeneration observed in many lysosomal storage diseases may be at least partially due to impaired autophagic degradation, which is particularly vital for neurons.

6.4. Autophagy and muscle disorders

Autophagic vacuoles are a frequent feature in numerous muscular disorders. Such a pathological situation can be observed in patients suffering from Danon disease, an inherited disease resulting from null mutations in the lysosomal membrane protein LAMP-2 [83]. LAMP-2 deficiency leads to a fatal cardiomyopathy and myopathy sometimes associated with mental retardation [150]. Accumulation of autophagic vacuoles in the heart and skeletal muscle are hallmarks of the disease [84]. Studies in LAMP-2 deficient mice revealed in part similar findings [85]. Fifty percent of these mice die at an early postnatal age with massive accumulation of autophagic vacuoles in several tissues including liver, pancreas, spleen, kidney, lymph nodes, neutrophilic leukocytes, skeletal muscle, and heart. Autophagic vacuoles containing single mitochondria were frequently observed in cardiomyocytes [151] indicating that mitochondria are a main target for autophagic degradation in muscle tissues. These cellular alterations lead to a reduced contractility and an increased size of the heart in LAMP-2 knockout mice. This is in agreement with the finding that cardiomyopathy is the hallmark in Danon disease patients [83]. Biochemical and electron microscopy studies reveal that a retarded consumption, rather than increased formation, of autophagic vacuoles leads to their accumulation [152]. LAMP-double deficient fibroblasts lack both LAMP-2 and the structurally related LAMP-1 protein. These cells show a defect in the final maturation steps of late autophagic vacuoles, involving retarded fusion with lysosomes [33][119]. Interestingly, recruitment of the small GTPase Rab7 to autophagosomes is retarded in these cells [32].

Inhibition of lysosomal fusion using hydroxy-chloroquine causes similar vacuolar alterations and myopathies to Danon disease, confirming the important role of lysosome–autophagosome fusion for muscle cell physiology [153]. Impaired autophagosome maturation may also be related to other types of diseases such as X-linked myopathy with excessive autophagy, infantile autophagic vacuolar myopathy, adult-onset autophagic vacuolar myopathy with multiorgan involvement, and X-linked congenital autophagic vacuolar myopathy [154]. The molecular defects in these disorders are still unknown.

Although altered autophagy has been observed in various heart diseases, including cardiac hypertrophy and heart failure, it remains unclear whether autophagy plays a beneficial or detrimental role in these diseases. As mentioned earlier, tissue-specific deletion of atg5 in heart causes cardiac hypertrophy and contractile dysfunction [86]. In addition, increased levels of ubiquitinated proteins and abnormal mitochondria are found, especially after treatment with pressure overload or β-adrenergic stress. This suggests that autophagy is needed in the heart to ensure the availability of sufficient energy substrates and to control cardiomyocyte size and global cardiac structure and function.

6.5. Common aspects in autophagy and phagocytosis

As described above, autophagy plays a role in innate immunity against intracellular pathogens [104][105] by clearing microbes directly via ingestion into autophagosomes for subsequent degradation in autolysosomes [108][155]. Similar to the process of intracellular defense, phagocytosis is an evolutionary conserved mechanism involved in the removal of extracellular organisms. Interestingly, it was found that the phagocytic and autophagic pathways are linked. Toll like receptor (TLR) activation triggers the recruitment of autophagy proteins LC3, Atg5 and Atg7 to the phagosomal pathway. Before these events Beclin 1 and class III PI3-kinase activity are found in phagosomes [156]. These autophagy-specific proteins are recruited to the phagosome, while almost no classical autophagosomes are observed in the cells. Phagosome fusion with lysosomes is then initiated, leading to acidification and killing of the ingested organisms. Thus, engaging the autophagy pathway via TLR signaling (especially TLR7 through its binding to single-stranded RNA) enhances phagosome maturation and destruction of pathogens [157]. This underscores the intimate link between autophagy and phagocytosis.

As mentioned earlier, M. tuberculosis is able to survive inside macrophages by preventing the fusion of phagosomes with lysosomes, but induction of autophagy bypasses the maturation defect, leading to phagolysosome formation and bacterial killing [108]. Autophagy induction induces the localization of Beclin 1 and LC3 to phagosomes, suggesting the phagosomes are diverted to an autophagosome-like compartment that is then able to fuse with lysosomes.

The association between autophagy and phagocytosis is also underlined by studies with cells lacking either one or both LAMPs [33]. As described above, autophagosome–lysosome fusion is impaired in LAMP-double deficient cells [32]. Whereas macrophages and fibroblasts from LAMP-1 or LAMP-2 single-deficient mice display normal fusion of lysosomes with phagosomes, in LAMP-double knockout fibroblasts phagosomes are unable to recruit late endosomal/lysosomal markers and phagocytosis is arrested prior to the acquisition of Rab7 [158]. Interestingly, the maturation of Neisseria-containing phagosomes is also disturbed and cells lacking both LAMP proteins fail to kill the engulfed pathogens [159]. The maturation block caused by LAMP deficiency is at least partially due to the inability of autophagosomes and phagosomes to undergo dynein/dynactin-mediated centripetal movement along microtubules towards lysosomes [158]. Interestingly LAMP-2 single knockout mice show an impaired phagosomal maturation in neutrophilic leucocytes. The impairment of this innate immune defense mechanism leads to periodontitis, which is one of the most widespread infectious diseases worldwide. The retarded clearance of bacterial pathogens is due to an inefficient fusion between lysosomes and phagosomes, leading to less efficient killing of the ingested pathogens [160][161]. Neutrophils of the LAMP-2 knockout mice also contain an accumulation of autophagic vacuoles [85][160], which is likely also due to impaired fusion of autophagosomes with lysosomes.

Taken together these observations indicate that fusion with lysosomes is required to successfully complete both autophagosome and phagosome maturation that is necessary for efficient degradation of the cargo. Further, the results show that the maturation of autophagosomes and phagosomes share common features, because both processes are impaired with similar tissue and cell specificity in LAMP-2 deficient mice and LAMP-double deficient cell lines.

7. Conclusions

Degradation of cytosolic proteins in lysosomes via autophagy has turned out to have numerous, partly unexpected, roles in health and disease. Autophagy has been shown to contribute to innate and adaptive immunity and longevity, and to the prevention of cancer and neurodegeneration, just to mention a few of its newly-revealed functions. Treatments for human diseases that specifically target autophagy do not yet exist. It is likely, however, that such treatments will emerge in the future, once the molecular mechanisms of the processes involved in autophagy regulation have been clarified and suitable inducers and inhibitors for clinical trials have been identified.

Full Paper : https://www.sciencedirect.com/science/article/pii/S0167488908002632

The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration

Published : 2015 Sep 30. doi: 10.1186/s40035-015-0041-1

Authors : Yong-Bo Hu Eric B Dammer Ru-Jing Ren Gang Wang

Abstract

The endosomal-lysosomal system is made up of a set of intracellular membranous compartments that dynamically interconvert, which is comprised of early endosomes, recycling endosomes, late endosomes, and the lysosome. In addition, autophagosomes execute autophagy, which delivers intracellular contents to the lysosome. Maturation of endosomes and/or autophagosomes into a lysosome creates an unique acidic environment within the cell for proteolysis and recycling of unneeded cellular components into usable amino acids and other biomolecular building blocks.

In the endocytic pathway, gradual maturation of endosomes into a lysosome and acidification of the late endosome are accompanied by vesicle trafficking, protein sorting and targeted degradation of some sorted cargo. Two opposing sorting systems are operating in these processes: the endosomal sorting complex required for transport (ESCRT) supports targeted degradation and the retromer supports retrograde retrieval of certain cargo.

The endosomal-lysosomal system is emerging as a central player in a host of neurodegenerative diseases, demonstrating potential roles which are likely to be revealed in pathogenesis and for viable therapeutic strategies. Here we focus on the physiological process of endosomal-lysosomal maturation, acidification and sorting systems along the endocytic pathway, and further discuss relationships between abnormalities in the endosomal-lysosomal system and neurodegenerative diseases, especially Alzheimer’s disease (AD).

The endosomal-lysosomal system is a series of organelles in the endocytic pathway where various cargo molecules required for normal cellular function are internalized, recycled and modulated. Recently, mounting evidence has suggested that abnormalities in both endosomes and lysosomes, or dysregulation in their trafficking, play an important role directly in a surprising host of neurological dysfunctions, represented by AD, Parkinson’s disease (PD), and Lewy body dementia (LBD) [13]. Thus, the endosomal-lysosomal system is emerging as a key to understanding the mechanisms underlying both protein degradation and neurodegeneration. Here, we intend to summarize advances in the study of the endosomal-lysosomal system, with a focus on compartmentalized organization of trafficking routes, sorting machinery and their relationships to neurodegeneration.

Endocytosis and endosome maturation. Protein internationalization is often dependent on a ubiquitous clathrin-mediated mechanism. Subsequent to internationalization, cargo proteins are transported to early endosomes via endocytic vesicles under the control of Rab5. Early endosomes serve as the major sorting stations where proteins can be sorted into recycling endosomes for recycling back to the cell surface, into a retrogradee pathway mediated by retromer to be sent back to the trans-golgi network (TGN), or into a degradation pathway for eventual targeting to the lysosome. As the number of intraluminal vesicles increases, early endosomes mature into late endosomes, and then late endosomes fuse with lysosomes.Due to their different capacities of acidification, a stable pH gradient is established in different compartments during the maturation process: early endosomes maintain pH at about 6.5, late endosomes at about 5.5 and lysosomes at about 4.5

A pH gradient established by vacuolar ATPase and chloride channels

Vacuolar ATP-dependent acidification

As mentioned above, the endosomal and lysosomal compartments share at least one similar significant characteristic: low intraluminal pH. These sealed acidic compartments provide an appropriate environment for optimal degradation of substrate cargo and recycling of their cognate receptors. As macromolecules are transported along the endosomal-lysosomal pathway, the internal pH of both endosomes and lysosomes decreases rapidly due to vacuolar acidification.

Previous research revealed that the same H+-ATPase, also known as vacuolar ATPase (V-ATPase), acidifies both endosomes and lysosomes. V-ATPase, differs from Na+,K+-ATPase in the plasma membrane, Ca2+-ATPase in the sarcoplasmic reticulum, and F1,F0-ATP synthase in mitochondria, in that it does not require a coupled influx of permeant anions [19]. Sulfhydryl alkylating reagents such as N-ethylmaleimide inhibit the V-ATPase dependent acidification of the endosomal-lysosomal system [1921] as well as the specific inhibitor Bafilomycin A1 [2223].

V-ATPase is a unique class of ATPase present throughout the membranes which constrain the endocytic pathway, including the trans golgi network (TGN). V-ATPase, as a protein complex, is composed of two multimeric subunits, V1 in the cytoplasmic domain and V0 within the vacuolar membrane; the activity of V-ATPase depends on the dynamic assembly of these. V-ATPase is widely expressed in eukaryotic cells and serves as the master regulator of vesicular acidification in many subcellular membrane bound organelles. It also has important roles to play in vesicular trafficking and proteostasis.

Abnormalities and dysregulation of the endosomal-lysosomal system in neurodegeneration

Increasing attention being paid to the endosomal-lysosomal system has begun to elucidate a relationship between endosomal-lysosomal defects and neurodegeneration. In particular, robust pathology implicating endosomal-lysosomal disruption in AD has been well characterized. Here, we focus preferably on AD as a example of neurodegenerative disease and we believe that AD represents a general model of neurodegenerative diseases on abnormalities of the endosomal-lysosomal system occur along a continuum that includes early endosome changes, dysregulated acidification and sorting component defects.

The endosomal–lysosomal system and AD. (i) endosomal enlargement, Rab5 overexpression and Aß accumulation; (ii) dysregulated endosomal-lysosomal acidification, pH elevation and tau aggregation; (iii) dysfunctional ESCRT complexes, defective autophagy and accumulation of intraluminal ubiquitinated proteins; (iv) defects of retromer: reduction of Vps26, Vps35 and SorLA disrupts the trafficking and processing of APP

Dysregulated acidification, cellular indigestion?

Endosomal-lysosomal pH defects are an emerging theme in mechanisms underlying a number of neurodegenerative diseases. To date, results from experiments in vivo and in vitro have revealed the importance of proper vesicular pH balance and optimal acidification in transporting and degrading cargo via the endocytic pathway [4849]. For instance, Lee et al. reported that, in presenilin1 (PSEN1)-deleted blastocysts, defective lysosome acidification was observed with a substaintially elevated lysosomal PH of 5.4 and PSEN1 is essential for the transport of mature V0a1 subunites of V-ATP to lysosomes for their acidification and proteolysis [50].

Specifically, dysregulation of acidification and intracellular pH perturbation could influence the activity of enzymes in endomembrane compartments, resulting in impaired clearance of protein aggregates downstream of elevated endomembrane system pH, or conversely, due to decreased cytoplasmic pH. Regarding the latter, asparaginyl endopeptidase (AEP) is a typical pH-sensitive protein hydrolase the activity of which depends on the acidic pH of vesicular compartments. Predominantly localized in late endosomes, asparaginyl endopeptidase (AEP) specifically cleaves substrates with an asparagine residue at the P1 site. It is known that AEP can undergo reversible pH-dependent autoproteolytic activation, and in normal conditions, full-length pro-AEP is inactive [51].

As pH decreases from neutral to acidic, the activity of AEP gradually increases, such that it is partially activated at pH 4.5 and fully activated at pH 3.5, via removal of a cap that covers the active site. In AD patients, lysosomal acidification may be defective and it has been shown that the intracellular pH of neurons gradually decreases with aging [52] and more so with lactic acid elevation seen in AD cortex [53], so ectopic AEP activation or activity after leakage of active enzyme from late endosomes or lysosomes may be increased. AEP is involved in pathological tau degradation. Specifically, AEP generates tau fragments that form insoluble fibrils and result in neurotoxicity and neuropathological changes in AD [5455].

Increased endosome and lysosome pH is expected to have global effects on the proteome, particularly membrane proteins which rely on this pathway for their regulation and degradation. Interestingly, studies of microglia in culture have shown that in the absence of inflammatory IL-6 signaling, microglia do not achieve a sufficiently low lysosomal pH to degrade Aß, while after stimulation, CLC7 trafficking to lysosomes increases and pH drops sufficiently to improve Aß clearance [4956].

We have recently performed a systematic look at the proteomic effects of defective endosomal-lysosomal pH in a cellular model, in order to develop a better understanding of the global changes in the proteome that follow inhibition of V-ATPase and could be considered together as a signature or biomarker of defective vacuolar acidification [5758], which would be expected to have an overlap with changes seen in AD and/or other conditions which may be subject to this often age-dependent defect.

Indeed, blocking lysosomal degradation with bafilomycin A1 affects a significant increase in global K63 polyubiquitin linkages, which also occurs in AD, but AD brain global ubiquitin linkage profiling shows changes in other linkages as well [59]. Since K63 linked ubiquitin is not targeted to the proteasome, but does increase with V-ATPase acidification in the model of lysosomal insufficiency, the increase in K63 linkages seen in AD implicates accumulation of ubiquitinated proteins with obligate ESCRT-mediated degradation. Thus, trafficking, inflammatory signaling, and cell-type specific roles of dynamic lysosomal acidification are becoming increasingly appreciated for potential roles in AD pathogenesis.

Finally, it is important to point out that the general processes of endocytosis and endosomal-lysosomal dysregulations above-mentioned, have profoundly distinct implications for potential functions associated with other neurodegenerative diseases, such as PD, ALS, and Frontotemporal lobe degeneration (FTLD).

Conclusions and perspective

The endosomal-lysosomal system is a complex and highly dynamic process, where internalized transmembrane proteins, receptors, receptor ligands, and some soluble extracellular proteins are transported, sorted, and/or degraded. In recent years, particular attention has been paid to the endosomal-lysosomal system because it is involved in almost all of the neurodegenerative diseases, even though how it does so in each still remains unclear. Ongoing future studies will investigate both common and cell-type (or even local membrane region) specific trafficking and proteostasis pathways involving the endosomal-lysosomal system as well as the larger endomembrane system.

For example, a better understanding of distinct roles that ubiquitination plays in ESCRT-mediated proteostasis (and even lipid droplet homeostasis [79] which appears to be dysregulated in glia in neurodegeneration [4780]) could help to predict and ultimately therapeutically address the onset and progression of neurodegenerative diseases for specific individuals or sub-populations. This milieu of membrane-bound proteins that dynamically sorts cargo enriched for signaling, inflammation, and neurotrophic functions—among others—promises to provide a mother lode of new therapeutic targets for amelioriating neurodegenerative diseases, but the exploration also promises to be challenging, requiring the development of novel techniques and insight.

Full Paper : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596472/

pH – CoronaVirus and the SO2 Madness

Dear All,

When I first read about the CoronaVirus (2019-nCoV), my immediate reaction was to DuckDuckGo search pH dependency = https://duckduckgo.com/?q=coronavirus+ph+dependency&atb=v121-1&ia=web

This immediately gave me several bits of vital information, to understand the situation from a biological and nutritional perspective. By looking at historical studies, to see some baseline characteristics:

  • In this report, we show that the SARS-CoV S glycoprotein mediates viral entry through pH-dependent endocytosis.  Reference : 1
  • In contrast, influenza and Ebola viruses are prototypes for viruses that utilize a pH-dependent endocytotic pathway (43). To determine the pathway utilized by the SARS-CoV, the pH dependence of the SARS-CoV S-pseudotyped lentiviral vector was analyzed. Addition of ammonium chloride, which prevents acidification of the endosome, caused a dose-dependent reduction in viral entry (Fig. (Fig.1B,1B, left) at concentrations similar to those described for other pH-dependent viral glycoproteins (31143). This effect was also observed with another inhibitor of endosomal acidification, bafilomycin, also in a dose-dependent fashion (Fig. (Fig.1B,1B, right). Reference : 1
  •     The World Health Organization has concluded that SARS is produced by a new virulent strain of coronavirus. Specific research on the possible pH dependency of the SARS virus has not yet been done.  It is well known that coronavirus infectivity is exquisitely sensitive to pH.  For example, the MHV-A59 strain of coronavirus is quite stable at pH 6.0 (acidic) but becomes rapidly and irreversibly inactivated by brief treatment at pH 8.0 (alkaline).  Human coronavirus strain 229E is maximally infective at pH 6.0.  Infection of cells by murine coronavirus A59 at pH 6.0 (acidic) rather than pH 7.0 (neutral) yields a tenfold increase in the infectivity of the virus. Reference : 2
  • Infection of susceptible murine cells with the coronavirus mouse hepatitis virus type 4 (MHV4) results in extensive cell-cell fusion at pHs from 5.5 to 8.5. The endosomotropic weak bases chloroquine and ammonium chloride do not prevent MHV4 infection. In marked contrast, we have selected variants from a neural cell line persistently infected with MHV4 which are entirely dependent on acid pH to fuse host cells and are strongly inhibited by endosomotropic weak bases…  Wild-type S induced cell-cell fusion at neutral pH, whereas variant S required prolonged exposure to acidic pH to induce fusion… These findings demonstrate that the pH dependence of coronavirus fusion is highly variable and that this variability can be determined by as few as three amino acid residues. Reference : 3

So, we can see above, that in most cases (all that I can find), scientific studies are showing multiple variants of CoronaVirus are completely pH driven, in terms of susceptibility (most cases, sadly only pH range 5.5-8.5 tested, maybe scientists could test Magnesium Hydroxide = 10.5, to show if higher pH is protective/preventative) and intensity of infection (seemingly all), though there are variations in pH levels required to neutralise the impacts.

Now, initially I just doubled down on my thoughts on Alkalising my own terrain and looking after my childrens via diet and key suppliments. However, as the stories became more and more alarming, things took a dramatic turn.

Sunday 9th February 2020 Reports emerged of an outrageous happening in China

Using Windy.com it was discovered that rates of Sulphur Dioxide above Wuhan were reading 1351PPB

Now, this alone, suggests strongly that there has been a huge upsurge in burning of organic matter which releases SO2, leading to speculation that high levels of cremation are occurring. The data is contested by some, claims made that this comes from a ‘modelling’ or predictive site, so the numbers cannot be trusted (maybe true, but they are a strong indicator of ‘in the range of’, if not exact in the measurements. This may have some validity, however, another site, https://earth.nullschool.net/ showed similar numbers to https://windy.com even when you look without the forecast running you still get numbers in the potentially fatal zones (just like predicting the weather in general, supercomputers are pretty accurate at the immediate forecast numbers).

When I saw these reports, my mind was not transfixed on whether or not this was exactly accurate, or whether it was due to cremations (if so the numbers would clearly need to be hugely higher to create this phenomena), it was OMG why is the Chinese Authorities allowing huge ammounts of SO2 into the atmosphere in the midst of a pH dependant Viral outbreak?

So, immediately I went to look at the safe limits, remember the models were showing 1,300+ PPB :

  • SO2 is a toxic gas, which is directly harmful to human health. It is heavier than air and has a suffocating odour at an atmospheric concentration of around 500 parts per billion (ppb), at which level it can be fatal.  At lower levels, chest pains, breathing problems, eye irritation and a lowered resistance to heart and lung diseases can be experienced. At 20 ppb or lower there should be no ill effects to a healthy person. The normal atmospheric background concentration of SO2 is generally less than 10 ppb.
  • A secondary effect is the formation of sulphates (and nitrates), in the form of aerosols or very fine airborne particles, which can comprise a significant proportion of the particulate matter and have been linked to increased asthma attacks, heart and lung disease and respiratory problems in susceptible population groups.
  • A third effect can occur further away from the emission source where the sulphur oxides will have converted to acids by aqueous phase reactions in the atmosphere. These acidic aerosols are eventually precipitated as acid rain, snow, sleet or fog but only when they encounter the right meteorological conditions. In the absence of man made pollution rain water would be slightly acidic, around pH 5, due to the presence of carbonic acid from the interaction of water vapour and naturally occurring levels of CO2. Acid rain on the other hand has been measured with pH levels below 3 corresponding to vinegar. 
  • In their 2009 joint proposal to the IMO, the USA and Canada stated that by designating the eastern and western seaboards of North America an Emissions Control Area, as many as 8,300 lives will be saved and over three million people will experience relief from acute respiratory symptoms each year”. Reference : 4

So, we can see above, that rates at or above 500 PPB are considered an immediate threat to life, to many groups in society when all is otherwise well. However, Wuhan and several other regions are showing numbers at this level and 2-3x this level, which is a clear respiratory danger to life, whilst in the midst of another Respiratory crisis in the form of CoronaVirus.

WHAT THE HELL IS GOING ON!!!

The issue over whether this is Cremations, or not, for me is absolutely secondary (though more on this later).

The issue is, who in a sane mind in Chinese Authorities, would authorise or advise scientifically that it was fine to allow the output of huge plumes of SO2, when whole cities are in lockdown, this is INSANE!

Here is few screen grabs, I took last night to show the current predicted Air levels of Sulphur Dioxide:

Then, using https://earth.nullschool.net/ at around 12:30am 11/02/2020 UK Time, the Supercomputer forecasting modeller showed 928/2.62 = 354PPB
Wuhan area, 22 hours later at 21:00 UK Time showing 1272/2.62 = 485 ppb Near Potentially Fatal level
Chongqing region, 22 hours later at 21:00 UK Time showing 924/2.62 = 352 ppb

This is just the craziest thing I have experienced mankind do to itself ever. In the midst of cities being locked down due to a virulent Viral emergency, something in China is causing SO2 levels up to appear 1-3x that which is considered an immediate threat to life, yet we are hearing no warnings from the Chinese authorities or WHO that this is happening.

When I took these readings, multiple other cities were all showing these same high readings, Chongqing was at (or over) 500PPB and others I did not record the names of, again I stress the forecast as not running, this was a ‘prediction’ of the present.

Here is a graphic from the Wuhan Air Quality guidelines, showing the levels and targets to bring this further down, up to 2015:

So, we can see SO2 µg m3 concentrations were recorded at averaging 20µg m3 in 2015 on a downward trend line, now we are seeing 16-17x this level in the midst of a respiratory viral crisis!

As I write this today (12:45pm 11/02/2020) North West (as the wind is blowing) of Wuhan is showing readings between 300-500µg m3. It appears the out-gassing is highest during the nights, very very small mercies!

Lunchtime 11/02/2020 8:50pm Chinese Time (if burning of organic matter is happening during the night, as the modelling forecasts suggest, this may well rise back in the coming hours)

This has left me staggered, how can the Chinese Scientists who advise Government policy, or the WHO, or NATO, not be shouting and screaming about this? Imagine you are in this region, or your loved ones, and they are already at huge threat due to a clearly highly dangerous virus, then you find that the air is being degraded so much as to cause a huge uptick in susceptibility to respiratory illnesses???

It is beyond any reasonable debate, that SO2 gas is an acid forming respiratory threat, it will drive down the pH of the terrain it encounters when in sufficient volume and/or when the host lacks sufficient buffering capability.

So, now we should look at what level of SO2 output huge numbers of cremations may cause, when I was a young man I travelled around South-East Asia, one place which was fascinating was Varanasi. The ancient town famous for being a place an estimated 25,000-30,000 Hindu’s go, to be cremated in the open air Ghats per year.

If we divide the lower number 25,000 x 365 we can say an estimated 65 people per day are being Cremated in Varanasi (to my recollection I recall massively higher numbers), none-the-less, this gives us a really good baseline, to look at the SO2 levels above/around Varanasi… given this daily figure is more than are reportedly dying in any one place daily in China (or anywhere) due to CoronaVirus:

So, we can see that at 6:50pm local time in Varanasi, when the bodies will have chiefly been burning through the day, we have 12PPB = 65 bodies burned a day, straight out into the atmosphere.

So, the above shows fairly conclusively, that if it is bodies being cremated in China, the numbers must be in the range of 2 orders of magnitude higher (100x), to have anything like the outputs we are seeing in China. 650 cremations would speculatively result in 120PPB, 6,500 would conceivably result in 1,200PPB+ as has been recorded (modelled or forecast, as you will). The article on effects of SO2 cited above states that ambient levels will be below 10PPB, so we could say the difference between 10 and 12 is what 65 bodies being cremated is showing as causative, then the numbers start to spiral into much higher orders of magnitude (if a 2 points SO2 rise is shown for 65 cremations, then 65 x 20 = 130, 65 x 200 = 13,000, 1200 x 65 = 78,000!!! The numbers start to look absolutely catastrophic is this is cremation driven)

This is a crude comparison, of course, but what other way can we compare to get an insight of what might be happening to create such huge waves of seemingly deadly gas sweeping across China? Incineration of bedding, medical materials (and such) likely dampens these numbers down, but none the less, something much more dramatic than we are being shown by the Chinese authorities seems to be happening.

This is not meant to be alarmist, this is meant to be prodding around with the scant information people are discovering, to allow us to get some kind of clearer picture.

That there is a two week gestation period, before symptoms show, then if like other viruses of the type, up to an 8-10 week illness/recovery period, means we have another 4-6 weeks to see what the first wave is actually doing to people, I pray we all keep relaying the truth of our experiences, to allow the best outcome for us all.

Wishing you all well

Rich Fosh

References:

  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC415834/
  2. https://www.meridianinstitute.com/newslet/Vol7-3/7-3.html
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC240014/
  4. https://www.egcsa.com/technical-reference/what-are-the-effects-of-sulphur-oxides-on-human-health-and-ecosystems/
  5. https://earth.nullschool.net/
  6. https://www.windy.com/

Related :

http://chooselife.co.uk/index.php/2019/08/24/ph-the-toxicity-arrow-piercing-modern-society/

CoronaVirus pH

pH-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus Is Mediated by the Spike Glycoprotein and Enhanced by Dendritic Cell Transfer through DC-SIGN

June 2004

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV) synthesizes several putative viral envelope proteins, including the spike (S), membrane (M), and small envelope (E) glycoproteins. Although these proteins likely are essential for viral replication, their specific roles in SARS-CoV entry have not been defined. In this report, we show that the SARS-CoV S glycoprotein mediates viral entry through pH-dependent endocytosis. Further, we define its cellular tropism and demonstrate that virus transmission occurs through cell-mediated transfer by dendritic cells. The S glycoprotein was used successfully to pseudotype replication-defective retroviral and lentiviral vectors that readily infected Vero cells as well as primary pulmonary and renal epithelial cells from human, nonhuman primate, and, to a lesser extent, feline species. The tropism of this reporter virus was similar to that of wild-type, replication-competent SARS-CoV, and binding of purified S to susceptible target cells was demonstrated by flow cytometry. Although myeloid dendritic cells were able to interact with S and to bind virus, these cells could not be infected by SARS-CoV. However, these cells were able to transfer the virus to susceptible target cells through a synapse-like structure. Both cell-mediated infection and direct infection were inhibited by anti-S antisera, indicating that strategies directed toward this gene product are likely to confer a therapeutic benefit for antiviral drugs or the development of a SARS vaccine.

The severe acute respiratory syndrome coronavirus (SARS-CoV) is the likely cause of an acute infectious respiratory disorder identified in highly lethal outbreaks during the past year (1018213240). Infection is characterized by acute flu-like symptoms that progress to a severe febrile respiratory illness with significant mortality. Coronaviruses, comprising a genus of the Coronaviridae family, are enveloped positive-strand RNA viruses. In general, coronaviruses cause respiratory and enteric diseases in humans and domestic animals (1520). Two previously known human coronaviruses caused only mild upper respiratory infections (1520). In contrast, a highly pathogenic, severe respiratory disease is caused by the SARS-CoV, especially in the elderly (44). Coronaviruses can be divided into three serologically distinct groups (15). Phylogenetically, SARS-CoV is not closely related to any of the three groups (26), though it is most similar to the group II coronaviruses (3336).

Although the organization of the SARS-CoV genome is related to that of animal coronaviruses, its genetic sequence is unique, and the structure and function of its gene products are not known. At least 14 open reading frames (ORFs) can be identified in its genome (263436). Among these, the replicase/transcriptase genes are located in the 5′ portion of the genome. At its 3′ end, the four major structural proteins (S, M, N, and E) are made through different subgenomic RNAs. Based on comparison to animal coronaviruses, three structural gene products are predicted to be present on the viral envelope: the spike (S), membrane (M), and small envelope (E) proteins (202634). The structure of the SARS-CoV envelope differs in some respects from that of other enveloped viruses, such as retroviruses and lentiviruses, many of which contain one viral envelope protein.

Envelope or spike proteins from enveloped viruses have been used to pseudotype retroviral and lentiviral vectors for functional and gene transfer studies (29354345); however, whether coronavirus glycoproteins could pseudotype these viruses was unknown. Here we report that replication-defective retroviral (Moloney murine leukemia virus) and lentiviral (human immunodeficiency virus type 1 [HIV-1]) vectors can be pseudotyped with the SARS-CoV S protein, and the properties of S related to entry have been defined. Using these pseudoviruses, we were able to determine the relative contributions of SARS-CoV envelope proteins to viral entry and fusion and to examine the roles of these different viral envelope gene products with respect to entry, cell specificity, and potential inhibition of viral replication.

Pertinent Extract:

In contrast, influenza and Ebola viruses are prototypes for viruses that utilize a pH-dependent endocytotic pathway (43). To determine the pathway utilized by the SARS-CoV, the pH dependence of the SARS-CoV S-pseudotyped lentiviral vector was analyzed. Addition of ammonium chloride, which prevents acidification of the endosome, caused a dose-dependent reduction in viral entry (Fig. (Fig.1B,1B, left) at concentrations similar to those described for other pH-dependent viral glycoproteins (31143). This effect was also observed with another inhibitor of endosomal acidification, bafilomycin, also in a dose-dependent fashion (Fig. (Fig.1B,1B, right).

Full :

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC415834/

Previous research from Meridian Institute Article :

Possible Relevance to SARS


    The World Health Organization has concluded that SARS is produced by a new virulent strain of coronavirus. Specific research on the possible pH dependency of the SARS virus has not yet been done.  It is well known that coronavirus infectivity is exquisitely sensitive to pH.  For example, the MHV-A59 strain of coronavirus is quite stable at pH 6.0 (acidic) but becomes rapidly and irreversibly inactivated by brief treatment at pH 8.0 (alkaline).  Human coronavirus strain 229E is maximally infective at pH 6.0.  Infection of cells by murine coronavirus A59 at pH 6.0 (acidic) rather than pH 7.0 (neutral) yields a tenfold increase in the infectivity of the virus.

  ChooseLife : If the strain of coronavirus responsible for SARS shares the pH characteristics of these other coronaviruses that are pH-dependent, this could be a valuable clue to effective prevention and treatment strategies for this potential epidemic. Perhaps keeping a balanced or slightly alkaline pH environment for the body’s tissues can provide viral protection or enhanced healing for SARS and common viral agents that cause respiratory infections. 

Inter-related to this, is research on MUC5B, which has shown that those of lower pH, are much more prone to having inhibited mucous membrane formation:

“Moreover, we demonstrate that the conformation of these highly entangled linear polymers is sensitive to calcium concentration and changes in pH. In the presence of calcium (Ca2+, 10 mM) at pH 5.0, MUC5B adopted a compact conformation which was lost either upon removal of calcium with EGTA, or by increasing the pH to 7.4. These results suggest a pathway of mucin collapse to enable intracellular packaging and mechanisms driving mucin expansion following secretion. They also point to the importance of the tight control of calcium and pH during different stages of mucin biosynthesis and secretion, and in the generation of correct mucus barrier properties.

ChooseLife Related Thoughts :

The above shows that there are multiple potential protective methodologies in play, some people may feel a glass of cold water with 1/2 teaspoon of Sodium Bicarbonate every two hours on the first day may be effective (outlined at the bottom of this page), this is one method I would consider myself (Arm and Hammer or Bobs Mill being Aluminium free). Also small Sips of highly Alkaline Milk of Magnesia, every hour, may coat the upper respiratory regions fairly well and rapidly bring up the pH, out of the greater danger zones of lower pH < 6.5 (this is my go to for my kids with sniffles or worse), I would likely do this myself for this situation.

Personally I am going to use this outbreak as a good time to bring my own (and childrens) pH up, using methods as above, plus make some Moreless Alkalising Mineral Mixture, which both Alkalises and significantly raises the Calcium levels in the body but in a complexed form (pre-bonded to Molasses or Honey) which does not hamper the Mucous membrane process outlined above, which as shown above in the scientfic literature is exactly what our bodies need to be ready to either repel, or minimise the effects of such threats.

Moreless Alkalising Mix :

http://chooselife.co.uk/index.php/2019/06/13/moreless-alkalising-remineralising-drink/

1918 Flu Prevention : Baking Soda:

https://www.proliberty.com/observer/20091216.htm

“The proven value of Bicarbonate of Soda as a therapeutic agent (from a letter to the Church and Dwight Company):

In 1918 and 1919 while fighting the Flu with the U.S. Public Health Service it was brought to my attention that rarely any one who had been thoroughly alkalinized with bicarbonate of soda contracted the disease, and those who did contract it, if alkalinized early, would invariably have mild attacks. I have since that time treated all cases of Cold, Influenza and LaGripe by first giving generous doses of Bicarbonate of Soda, and in many, many instances within 36 hours the symptoms would have entirely abated.

Further, within my own household, before Women’s Clubs and Parent-Teachers’ Association, I have advocated the use of soda as a preventative for ‘Colds’, with the result that now many reports are coming in stating that those who took ‘Soda’ were not affected, while nearly everyone around them had the ‘Flu’.

…An occasional three-day course of the Bicarbonate of Soda increases the alkalinity of the blood, assists elimination and increases the resisting power of the body to all Infectious Diseases…

Whenever taking a bicarbonate solution internally, the soda should be dissolved in cold water. In the event of a threatened attack we recommend the following treatment: During the first day take six doses of half a teaspoon of Bicarbonate of Soda in a glass of cool water, at about two hour intervals.”

General essay about pH and Toxicity:

http://chooselife.co.uk/index.php/2019/08/24/ph-the-toxicity-arrow-piercing-modern-society/

This should not be construed as Advice, simply reflections of my own thoughts.

Be Well, Rich

Acidic environment could boost power of harmful pathogens

by University of Kansas

The investigation was performed using small, bacteria-eating organisms called Caenorhabditis elegans, here imaged using Oregon Green-labeled dextran and 748 laser-scanning confocal microscopy.

When food we’ve swallowed reaches our stomachs, it finds an acidic environment. The low pH in the stomach helps to begin digestion—and has been thought to kill the bacteria that hides in food that otherwise could harm our bodies.

However, recent work from the Ackley and Chandler labs in the Department of Molecular Biosciences at the University of Kansas runs counter to this idea, instead suggesting lower pH in the digestive tract may make some bacterial pathogens even more harmful.

Their findings, published in the peer-reviewed journal PLOS Pathogens, could have implications for addressing the crisis of antibiotic resistance in bacterial infections around the world.

The investigation was performed using small, bacteria-eating organisms called Caenorhabditis elegans.

“These wormlike animals are transparent, so we can watch things that happen inside them quite easily,” said co-author Brian Ackley, associate professor of molecular biosciences at KU. “Using pH-sensitive chemicals developed at KU, called Kansas Reds, we were able to monitor the pH inside the digestive system and watch what happens when they eat harmful bacteria, compared to nonharmful bacteria.”

According to the KU researchers, under normal conditions while feeding on healthy bacteria, C. elegans digestive tracts are moderately acidic compared to human stomachs. But these model species’ stomachs also show regional differences within the digestive tract. When they ingest pathogens, they neutralize the acidic environment.

This observation suggested the animals could discriminate between good and bad bacteria, and harmful bacteria prompted a less acidic digestive tract in C. elegans—a result that runs counter to what one might expect if the acidic environment was generated to kill bacteria.

To test this, the researchers used animals with mutations in genes that helped regulate the pH in their digestive tracts.

“When animals had a more acidic digestive system, they were more likely to be affected by pathogenic bacteria—again counter to what one might guess if acidity was useful in killing harmful bugs that might sneak into the body with food,” Ackley said. “Our lab teams were able to show the effect on the animals was specifically due to the pH by adding a base to buffer the digestive tract. We used bicarbonate, the same agent our bodies use to neutralize stomach contents when they pass into our intestines. Neutralizing the pH in the mutant animals reverted the accelerated infection by the pathogenic bacteria.”

The KU researcher said different species react differently when their bodies sense pathogenic bacteria—but some biological reactions are common to many animals.

“A general response involves the creation of chemicals, like hydrogen peroxide or hypochlorous acid—aka bleach—near the bacteria, and then having specialized immune cells eat the dying bacteria,” Ackley said. “To keep our bodies safe, the immune system only deploys these defenses when it’s sure it is being invaded. The work in C. elegans may suggest a way the body can have these defenses ready to go at a moment’s notice—that is, keep the chemical environment in a moderately acidic state where making those chemicals is difficult, then, upon infection, simply neutralize the environment to deploy the defenses.”

Ackley’s KU colleagues on the work were lead author Saida Benomar, Patrick Lansdon and Josephine R. Chandler of the Department of Molecular Biosciences, along with Aaron Bender of the Department of Medicinal Chemistry, and Blake R. Peterson of The Ohio State University.

The researchers believe there may be reasons to believe these systems could work similarly in people.

The genes they studied in C. elegans also exist in humans and control parts of the immune system. Further, research in other labs has shown occasions in humans where problems with regulating pH are associated with increased risk of infection. Moving forward, the researchers want to understand the mechanism at a deeper level.

“Our goal is to boost this natural defense system in people as a way to either avoid or reduce the use of antibiotics,” Ackley said. “Right now, our antibiotic use is unsustainable, and bacteria are evolving resistance at an alarming rate. If the system discovered in C. elegans is in fact still present in humans, it would suggest bacteria are much slower to adapt to this defensive strategy than they are to antibiotics.”

Source : https://phys.org/news/2020-01-acidic-environment-boost-power-pathogens.html

ChooseLife : Carey Reams stated that the production and regulation of stomach acid, is firstly regulated by the Liver, and, that primarily it’s production requires Calcium Salt in the form of Calcium Gluconate. Reams often proposed that a diet lower in Protein was better for health, so this may align to this concept, that those eating more meat or plant proteins may have higher stomach acid production, and, hence a generally lower pH. Then becoming more susceptible to these type of infections?

The MUC5B mucin polymer is dominated by repeating structural motifs and its topology is regulated by calcium and pH

Gareth W. HughesCaroline RidleyRichard CollinsAlan RosemanRobert Ford & David J. Thornton 

Abstract

The polymeric mucin MUC5B provides the structural and functional framework of respiratory mucus, conferring both viscoelastic and antimicrobial properties onto this vital protective barrier. Whilst it is established that MUC5B forms disulfide-linked linear polymers, how this relates to their packaging in secretory granules, and their molecular form in mucus remain to be fully elucidated. Moreover, the role of the central heavily O-glycosylated mucin domains in MUC5B conformation is incompletely described. Here we have completed a detailed structural analysis on native MUC5B polymers purified from saliva and subsequently investigated how MUC5B conformation is affected by changes in calcium concentration and pH, factors important for mucin intragranular packaging and post-secretory expansion. The results identify that MUC5B has a beaded structure repeating along the polymer axis and suggest that these repeating motifs arise from distinct glycosylation patterns. Moreover, we demonstrate that the conformation of these highly entangled linear polymers is sensitive to calcium concentration and changes in pH. In the presence of calcium (Ca2+, 10 mM) at pH 5.0, MUC5B adopted a compact conformation which was lost either upon removal of calcium with EGTA, or by increasing the pH to 7.4. These results suggest a pathway of mucin collapse to enable intracellular packaging and mechanisms driving mucin expansion following secretion. They also point to the importance of the tight control of calcium and pH during different stages of mucin biosynthesis and secretion, and in the generation of correct mucus barrier properties.

Full :

https://www.nature.com/articles/s41598-019-53768-0

The Curse Causeless Shall Not Come

FOREWORD

This author may very well go to jail for disclosing the facts contained in this booklet. You will read about a very serious subject: Cancer.

What you will read is the First Person account of how this author was cured of a malignant cancer of the descending colon by a simple dietary procedure. It is expected that this very book will be used against this author to establish legally the fact that he is practicing medicine without a license. He may be ordered by some Court to discontinue the future distribution of this book. Why? Cancer treatment, dear reader, is a major part of the multi-bill ion- dollar drug industry. You are being told, and it is now being subtly suggested to you by the many doctor type TV shows, that the American Cancer Society and the American Medical Association are leaving no stones unturned in an all out effort to “find the cause of cancer.” But at the very same time, every possible force and pressure is being applied to prevent doctors from using known and effective cancer cures. Instead, they are only permitted, by AMA agreement and government coercion through the Federal Food and Drug Administration, to treat cancer by means that they know are futile: Chemotherapy, cobalt radiation, and finally, the delaying tactic of surgery. Perhaps you think this is strong language! If the author dared, it would be even stronger: MURDER ONE.

The author’s grandfather died of colon cancer. The author’s father died of a cancer-related heart attack. His sister has cancer and has taken the Medical approach and is currently suffering from a series of unnecessary operations as her cancer strikes in first one place and then the other. None of these cancer victims were ever told by their Marcus Welby-type doctors that there are alternative choices; that there are valid and effective cancer cures that do not involve such radical surgery, expensive drugs and radiation. Any doctor who happens to stumble upon an effective treatment, or who develops one after years of research, may well be thrown into jail, harassed by the Courts in AMA initiated lawsuits, or driven out of the country.

It is widely known that cancer can be cured in Mexico, but unfortunately by the time the average cancer patient learns of such treatment, if indeed he ever does, the practitioners of the AMA have taken the last of his savings and insurance. With no money left, the patient is found to be “terminal” and sent home to die. For whatever good it may accomplish, and on behalf of the pitiful cancer patients now longing for the relief of death, this booklet is being published.

Nord W. Davis, Jr.